
Introducing SMS

If you own a mobile phone that’s less than two decades old, chances are you’re familiar with SMS messaging. SMS (short

messaging service) is now one of the most-used features on mobile phones, with many people favoring it over making phone

calls.

SMS technology is designed to send short text messages between mobile phones. It provides support for sending both text

messages (designed to be read by people) and data messages (meant to be consumed by applications).

As a mature mobile technology, there’s a lot of information out there that describes the technical details of how an SMS message

is constructed and transmitted over the air. Rather than rehash that here, the following sections focus on the practicalities of

sending and receiving text and data messages within Android.

Using SMS in Your Application
Android offers full access to SMS functionality from within your applications with the SMSManager. Using the SMS Manager,

you can replace the native SMS application or create new applications that send text messages, react to incoming texts, or use

SMS as a data transport layer.

SMS message delivery is not timely, so SMS is not really suitable for anything that requires real-time responsiveness. That said,

the widespread adoption and resiliency of SMS networks make it a particularly good tool for delivering content to non-Android

users and reducing the dependency on third-party servers.

As a ubiquitous technology, SMS offers a mechanism you can use to send text messages to other mobile phone users, irrespective

of whether they have Android phones.

Compared to the instant messaging mechanism available through the GTalk Service, using SMS to pass data messages between

applications is slow, possibly expensive, and suffers from high latency. On the other hand, SMS is supported by almost every

phone on the planet, so where latency is not an issue, and updates are infrequent, SMS data messages are an excellent alternative.

Sending SMS Messages
SMS messaging in Android is handled by the SmsManager. You can get a reference to the SMS Manager using the static

method SmsManger.getDefault, as shown in the snippet below.

SmsManager smsManager = SmsManager.getDefault();

To send SMS messages, your applications require the SEND_SMS permission. To request this permission, add it to the manifest

using a uses-permission tag, as shown below:

<uses-permission android:name=”android.permission.SEND_SMS”/>

Sending Text Messages
To send a text message, use sendTextMessage from the SMS Manager, passing in the address (phone number) of your recipient

and the text message you want to send, as shown in the snippet below:

String sendTo = “5551234”;
String myMessage = “Android supports programmatic SMS messaging!”;
smsManager.sendTextMessage(sendTo, null, myMessage, null, null);

The second parameter can be used to specify the SMS service center to use; entering null as shown in the previous snippet uses

the default service center for your carrier.

The fi nal two parameters let you specify Intents to track the transmission and successful delivery of your messages.

To react to these Intents, create and register Broadcast Receivers as shown in the next section.

Tracking and Confi rming SMS Message Delivery
To track the transmission and delivery success of your outgoing SMS messages, implement and register Broadcast Receivers that

listen for the actions you specify when creating the Pending Intents you pass in to the sendTextMessage method.

The fi rst Pending Intent parameter, sentIntent, is fi red when the message is either successfully sent or fails to send. The result

code for the Broadcast Receiver that receives this Intent will be one of:

❑ Activity.RESULT_OK To indicate a successful transmission.

❑ SmsManager.RESULT_ERROR_GENERIC_FAILURE To indicate a nonspecifi c failure.

❑ SmsManager.RESULT_ERROR_RADIO_OFF When the connection radio is turned off.

❑ SmsManager.RESULT_ERROR_NULL_PDU To indicate a PDU failure.

The second Pending Intent parameter, deliveryIntent, is fi red only after the destination recipient receives your SMS message.

The following code snippet shows a typical pattern for sending an SMS and monitoring the success of its transmission and

delivery:

String SENT_SMS_ACTION = “SENT_SMS_ACTION”;
String DELIVERED_SMS_ACTION = “DELIVERED_SMS_ACTION”;
// Create the sentIntent parameter
Intent sentIntent = new Intent(SENT_SMS_ACTION);
PendingIntent sentPI = PendingIntent.getBroadcast(getApplicationContext(), 0, sentIntent, 0);
// Create the deliveryIntent parameter
Intent deliveryIntent = new Intent(DELIVERED_SMS_ACTION);
PendingIntent deliverPI = PendingIntent.getBroadcast(getApplicationContext(), 0, deliveryIntent, 0);
// Register the Broadcast Receivers
registerReceiver(new BroadcastReceiver() {
@Override
public void onReceive(Context _context, Intent _intent) {
switch (getResultCode()) {
case Activity.RESULT_OK:
[… send success actions …]; break;
case SmsManager.RESULT_ERROR_GENERIC_FAILURE:
[… generic failure actions …]; break;
case SmsManager.RESULT_ERROR_RADIO_OFF:
[… radio off failure actions …]; break;
case SmsManager.RESULT_ERROR_NULL_PDU:
[… null PDU failure actions …]; break;
}
}
},
new IntentFilter(SENT_SMS_ACTION));
registerReceiver(new BroadcastReceiver() {
@Override
public void onReceive(Context _context, Intent _intent) {
[… SMS delivered actions …]
}
},
new IntentFilter(DELIVERED_SMS_ACTION));
// Send the message
smsManager.sendTextMessage(sendTo, null, myMessage, sentPI, deliverPI);

Monitoring Outgoing SMS Messages
The Android debugging bridge supports sending SMS messages between multiple emulator instances. To send an SMS from one

emulator to another, specify the port number of the target emulator as the “to” address when sending a new message.

Android will automatically route your message to the target emulator instance, where it’ll be handled as a normal SMS.

Conforming to the Maximum SMS Message Size
SMS text messages are normally limited to 160 characters, so longer messages need to be broken into a series of smaller parts.

The SMS Manager includes the divideMessage method, which accepts a string as an input and breaks it into an ArrayList of

messages wherein each is less than the allowable size. Use sendMultipartTextMessage to transmit the array of messages, as

shown in the snippet below:

ArrayList<String> messageArray = smsManager.divideMessage(myMessage);
ArrayList<PendingIntent> sentIntents = new ArrayList<PendingIntent>();
for (int i = 0; i < messageArray.size(); i++)
sentIntents.add(sentPI);
smsManager.sendMultipartTextMessage(sendTo,
null,
messageArray,
sentIntents, null);

The sentIntent and deliveryIntent parameters in the sendMultipartTextMessage method are ArrayLists that can be used to

specify different Pending Intents to fi re for each message part.

Sending Data Messages
You can send binary data via SMS using the sendDataMessage method on an SMS Manager. The sendDataMessage method

works much like sendTextMessage, but includes additional parameters for the destination port and an array of bytes that

constitute the data you want to send.

The following skeleton code shows the basic structure of sending a data message:
Intent sentIntent = new Intent(SENT_SMS_ACTION);
PendingIntent sentPI = PendingIntent.getBroadcast(getApplicationContext(), 0, sentIntent, 0);
short destinationPort = 80;
byte[] data = [… your data …];
smsManager.sendDataMessage(sendTo, null, destinationPort, data, sentPI, null);

Listening for SMS Messages
When a new SMS message is received by the device, a new broadcast Intent is fi red with the

android.provider.Telephony.SMS_RECEIVED action. Note that this is a String literal, SDK 1.0 does not include a reference to

this string so you must specify it explicitly when using it in your applications.

For an application to listen for SMS Intent broadcasts, it fi rst needs to be have the RECEIVE_SMS permission granted. Request

this permission by adding a uses-permission tag to the application manifest, as shown in the following snippet:
<uses-permission
android:name=”android.permission.RECEIVE_SMS”/>

The SMS broadcast Intent includes the incoming SMS details. To extract the array of SmsMessage objects packaged within the

SMS broadcast Intent bundle, use the pdu key to extract an array of SMS pdus, each of which represents an SMS message. To

convert each pdu byte array into an SMS Message object, call SmsMessage.createFromPdu, passing in each byte array as

shown in the snippet below:
Bundle bundle = intent.getExtras();
if (bundle != null) {
Object[] pdus = (Object[]) bundle.get(“pdus”);
SmsMessage[] messages = new SmsMessage[pdus.length];
for (int i = 0; i < pdus.length; i++)
messages[i] = SmsMessage.createFromPdu((byte[]) pdus[i]);
}

Each SmsMessage object contains the SMS message details, including the originating address (phone number), time stamp, and

the message body.

The following example shows a Broadcast Receiver implementation whose onReceive handler checks incoming SMS texts that

start with the string @echo, and then sends the same text back to the phone that sent it:

public class IncomingSMSReceiver extends BroadcastReceiver {
private static final String queryString = “@echo “;
private static final String SMS_RECEIVED = “android.provider.Telephony.SMS_RECEIVED”;
public void onReceive(Context _context, Intent _intent) {
if (_intent.getAction().equals(SMS_RECEIVED)) {
SmsManager sms = SmsManager.getDefault();
Bundle bundle = _intent.getExtras();
if (bundle != null) {
Object[] pdus = (Object[]) bundle.get(“pdus”);
SmsMessage[] messages = new SmsMessage[pdus.length];
for (int i = 0; i < pdus.length; i++)

messages[i] = SmsMessage.createFromPdu((byte[]) pdus[i]);
for (SmsMessage message : messages) {
String msg = message.getMessageBody();
String to = message.getOriginatingAddress();
if (msg.toLowerCase().startsWith(queryString)) {
String out = msg.substring(queryString.length());
sms.sendTextMessage(to, null, out, null, null);
}
}
}
}
}
}

To listen for incoming messages, register the Broadcast Receiver using an Intent Filter that listens for the

android.provider.Telephony.SMS_RECEIVED action String, as shown in the code snippet below:

final String SMS_RECEIVED = “android.provider.Telephony.SMS_RECEIVED”;
IntentFilter filter = new IntentFilter(SMS_RECEIVED);
BroadcastReceiver receiver = new IncomingSMSReceiver();
registerReceiver(receiver, filter);

Simulating Incoming SMS Messages
There are two techniques available for simulating incoming SMS messages in the emulator. The fi rst was described previoulsy in

this section; you can send an SMS message from one emulator to another by using its port number as the destination address.

Alternatively, you can use the Android debug tools introduced in Chapter 2 to simulate incoming SMS messages from arbitrary

numbers, as shown in Figure 9-2.

Figure 9-2

Handling Data SMS Messages

Data messages are received in the same way as a normal SMS text message and are extracted in the same way as shown in the

above section.

To extract the data transmitted within a data SMS, use the getUserData and getUserDataHeader

methods, as shown in the following snippet:
byte[] data = msg.getUserData();
SmsHeader header = msg.getUserDataHeader();

The getUserData method returns a byte array of the data included in the message, while getUserDataHeader returns an array of

metadata elements used to describe the data contained in the message.

For security reasons, the version 1 release has restricted access to receiving data messages. The following section has

been left to indicate how likely future functionality may be made available.

